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ABSTRACT

Different neural networks have exhibited excellent performance on
various speech processing tasks, and they usually have specific advan-
tages and disadvantages. We propose to use a recently developed deep
learning model, recurrent convolutional neural network (RCNN), for
speech processing, which inherits some merits of recurrent neural
network (RNN) and convolutional neural network (CNN). The core
module can be viewed as a convolutional layer embedded with an
RNN, which enables the model to capture both temporal and fre-
quency dependance in the spectrogram of the speech in an efficient
way. The model is tested on speech corpus TIMIT for phoneme
recognition and IEMOCAP for emotion recognition. Experimental
results show that the model is competitive with previous methods in
terms of accuracy and efficiency.

1. INTRODUCTION

Speech processing has been studied for decades. It has long been
dominated by the Gaussian Mixture Models (GMM) - Hidden Markov
Model (HMM) [17] structure until the resurgence of deep neural
network (DNN) [20]. The first DNN successfully applied to speech
recognition refers to the multi-layer perceptron (MLP) (when trained
in an unsupervised way it is called deep belief network [13]). MLP-
HMM systems significantly improved the performance of speech
recognition on both small datasets [20] and large-scale datasets [7].
In recent years, recurrent neural networks (RNN) such as the long
short-term memory (LSTM) and gated recurrent units (GRU) have
achieved even better results in speech recognition. However, RNNs
are generally hard to train because they cannot take full advantage of
current highly optimized parallel computing facilities such as GPU.
Convolutional neural network (CNN) is another class of popular deep
learning model, but it has not exhibited significant improvement over
other models in speech processing.

Recently, Liang et al. [18, 19] proposed an integrated model
of RNN and CNN, called Recurrent Convolutional Neural Network
(RCNN), and successfully applied it to object recognition and scene
labeling. In view of the embedded RNN structure, it is expected to
function well in modeling speech because speech is a typical type
of sequential data, in which the information is temporally related.
This is the primary motivation of the present work. We want to
know whether this particular structure is suitable for speech-related
applications. The experimental results on two speech processing
datasets show that RCNN is efficient and effective, indicating that it
is a good alternative in related applications1.

1The source codes can be downloaded at: https://github.com/zhaoyue-
zephyrus/RecurrentConvNet-for-Speech.

2. RELATED WORK

CNN has been widely used in computer vision. Intuitively, it is
also applicable to speech recognition since the audio signal can be
converted via short-time fourier transform (STFT) into a spectrogram
which can be viewed as a 2-dimension image indexed by the time-axis
and frequency-axis. Despite some positive results, it has long been
argued that CNNs overkill the variation along time-scale by pooling
within a temporal window, resulting in deep fully-connected neural
network’s dominance in modeling time variation [17]. Abdel-Hamid
et al. introduced a limited-weight-sharing convolutional scheme
[1, 2] and found that using convolution along the frequency axis
or time axis increased recognition accuracy, but the improvement
was less significant along the time axis. To alleviate the problem,
a bottleneck network was constructed in place of the pooling layer
[29]. Furthermore, Tóth in [28] proposed treating time-domain and
frequency-domain separately and achieved the best performance on
the TIMIT dataset by constructing such a hierarchical convolutional
network.

Inspired by the temporal characteristics of speech, RNN, which
tries to predict the current frame based on feature information col-
lected from previous frames, has long been used in speech recognition
tasks [23]. Due to its capability of modeling sequential data, RNN
can be combined with HMM, or even replace HMM. In the latter
case, the model can be trained “end-to-end”, and for this purpose,
the connectionist temporal classification (CTC) [9] and RNN Trans-
ducer [8] were proposed to deal with the specific evaluation metric
for sequence labeling. Two special RNN models, Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) are now widely
used [10, 6] in speech recognition. These methods have showed
good results in many tasks. One of their limitations refers to the
difficulty in training, and in practice, their performance relies heavily
on pre-training.

Several recent works attempted to combine CNN and RNN
for speech recognition. Amodei et al. proposed a CNN-RNN hy-
brid model for Large Vocabulary Continuous Speech Recognition
(LVCSR) [4]. Sainath et al. proposed an architecture, which uni-
fies CNN, LSTM, and MLP [25]. In the two models, however, the
CNN module and RNN module are separated. A similar combination
method was proposed for text classification [16]. Recently, Liang et
al. proposed a deep learning model in which RNN and CNN were
tightly coupled [18, 19]. The hallmark of the model is that there exist
intra-layer recurrent connections among units in the convolutional
layer of CNN. This model was used in experimentes on static images,
but has not been tested on speech data.

3. METHODS

The core module inside RCNN is the Recurrent Convolutional Layer
(RCL), whose state evolves over discrete time steps. Recall that a



generic RNN usually has a feed-forward input x(t) and a hidden state
h(t) which depends not only on the input but also the hidden state in
the previous time step:

h(t) = F(x(t),h(t− 1), θ)

where the function F describes the dynamic characteristics of the
RNN, with parameter θ. In conventional RNN, F is realized by a
fully connected weight matrix and a nonlinear activation function
σ(x):

h(t) = σ(Wxhx(t) +Whhh(t− 1) + bh).

In RCL, the connections are local and share the same weights
across the spectrogram, i.e., RCL is realized by convolution. Denote
the feedforward input at position (i, j) by x(t), and the state of the
hidden layer to be h(t), then

h(t)(i, j) = σ(
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where wf
k and wr

k are the k-th feed-forward kernel and recurrent
convolutional kernel, respectively. Both kernels are shared at differ-
ent time steps. σ(x) = fn(g(x)) is a composition of two nonlinear
functions. The inner one g(x) can be either a conventional sigmoid
function g(x) = 1/(1 + e−x) or a rectified linear unit (ReLU) [21]
g(x) = max{x, 0}. A model with ReLU usually converges faster
and tends to achieve better performance compared to using the sig-
moid function. However, the faster convergence brings the problem
of “exploding gradient”, which calls for smaller learning rate and
necessary normalization. The outer function fn(·) denotes an appro-
priate normalization function. The batch-normalization method [14]
is adopted here. Specifically, fn(xi; γ, β) = γx̂i + β, where γ and
β are trainable parameters, and

x̂i = xi−µB√
σ2
B+ε

µB = 1
m

∑m
i=1 xi

σ2
B = 1

m

∑m
i=1(xi − µB)2.

In the equations above, xi denotes the input feature to be normalized,
x̂i denotes the normalized feature, ε denotes a small constant (10−5

in our experiment), µB denotes the mini-batch mean and σ2
B denotes

the mini-batch variance.
In implementation, an RCL is unfolded for T time steps into a

multi-layer sub-network. See Fig. 1 for an example with T = 3.
The receptive field (RF) of each unit expands with larger T , so that
more context information is captured by the unit. The depth of the
subnetwork increases with larger T , while keeping the number of
parameters constant due to weight sharing across time steps.

It is assumed that the input to an RCL x(t) is the same across
time t, which is denoted by x0. It is equivalently the output of the
previous layer. This assumption means that the feed-forward part
contributes equally at every time step.

To understand the essence of the RCL, it is useful to clarify the
concept of time step in RCL. It is not identical to the time associated
with the sequential data, and instead it refers to an iteration during
processing the data. This is in sharp contrast with conventional
RNN, whose time step is identical to the time present in the data.
In conventional RNN, the current state is updated according to the
previous state, while an RCL processes information from neighboring
time slots and frequency banks at each iteration. In this sense, RCNN

t=0

t=1

t=2

Fig. 1. Illustration of a single RCL (left) and its unfolded version with
T = 3 (right). The colored parallelograms in the bottom represent
the input spectrograms. The upper ones stand for the hidden states.
The dotted lines denote feed-forward connections and the solid lines
denote recurrent connections.

shares the advantage of multi-dimensional recurrent neural network
(MDRNN) [11], that is, modeling on recurrent relationship along all
possible dimensions not merely temporal dimension.

By stacking several RCLs, and optionally interleaved with pool-
ing layers and other layers, a deep RCNN can be constructed. This
resembles how CNN is constructed based on convolutional layers
and other layers. In both computer vision applications and speech
recognition applications, it has been found that adding several fully
connected layers (i.e., an MLP) on the top will boost the perfor-
mance of CNN [26, 24]. Inspired by this, we focused here on the
RCNN-MLP architecture in experiments.

4. EXPERIMENTS

Two speech processing tasks, phoneme recognition and emotion clas-
sification, were considered in our experiments. In phoneme recogni-
tion, RCNN was used to predict senones directly. In emotion classifi-
cation, RCNN is used for feature extraction, while the classification
is fulfilled by a support vector machine (SVM). All experiments were
carried out on a NVIDIA GeForce GTX Titan Black GPU.

4.1. Phoneme recognition

4.1.1. Dataset

TIMIT recorded 630 speakers, each reading ten phonetically rich sen-
tences. The TIMIT corpus was manually segmented and annotated
using 61 phonemes. Excluding the SA sentences that all speakers
read, the training and test sets consist of 3696 and 1344 utterances,
respectively. 192 utterances among the complete test set are pre-
scribed to be a core test set. We also report our result on a pre-defined
development set, a subset of 400 utterances from the test set. 10%
(369) utterances were randomly drawn from the training set for auto-
matically adjusting learning rate during training.

4.1.2. Experimental setup

The raw speech data recorded at a sample rate of 16 kHz was first
pre-processed via a short-time Fourier Transform with 40 filter-banks
distributed on a mel-scale, into 25 ms-long frames, at a stride of 10
ms. The first and second temporal derivatives were also included,
which were concatenated to be a 120-dimension feature vector for
each frame. The coefficients were then normalized so that they had a
mean of 0 and variation of 1 over the training set.



model layer kernel size2 stride # of channels batch norm

CL+pooling CL (15,8) (1,1) 128 -
pooling (2,2) (2,2) - -

CL+CL+pooling CL1 (15,8) (1,1) 128 no
CL2 (7,3) (1,1) 128 no
pooling (2,1) (2,1) -

RCL(1)+pooling RCL forward (12,2) (4,1) 128 yes
RCL recurrent (7,9) (1,1) 128 yes
pooling (4,1) (4,1) - -

RCL(2)+pooling RCL forward (11,2) (1,1) 128 yes
RCL recurrent (15,5) (1,1) 128 yes
pooling (15,1) (15,1) - -

RCL(3)+pooling RCL forward (11,3) (1,1) 128 yes
RCL recurrent (11,3) (1,1) 128 yes
pooling (15,1) (15,1) - -

RCL(2)+CL RCL forward (10,2) (2,1) 128 yes
RCL recurrent (9,5) (1,1) 128 yes
CL (16,2) (1,1) 256 no

Table 1. Description of the first part of the models before the 3-layer
MLP used for TIMIT phoneme recognition

For a frame at time t, a patch ranging from t−∆ to t+ ∆ on the
time axis was extracted, which included all filter-bank coefficients
on the frequency axis. The spectrogram fed into a model as input
had three channels consisting of static coefficients and coefficients of
the first and second temporal derivatives, respectively. Therefore, the
input patch was of size (2 ×∆ + 1) × 40 × 3. In all experiments,
∆ = 5. The network was trained using the stochastic gradient descent
(SGD) with automatic adjusting of the learning rate. The mini-batch
size was 200. The initial learning rate was set to be 0.02 per batch
and was annealed to half of its original value if the accuracy on the
validation set stopped increasing. The momentum was 0.9.

To generate the frame-level label, a conventional context-
dependent (CD) HMM of 1954 senones was used with the assistance
of the Kaldi toolkit [22]. The phoneme label outputs were mapped
to the usual set of 39 labels for evaluation. The ultimate result was
based on phoneme error rate (PER).

We tested different models on CNTK [3], all of which used the
same 3-layer MLP (each layer had 2048 units) in the end. Then
the difference between different models would mainly come from
the difference in other layers. Table 1 lists settings of those different
layers in different models, where CL denotes convolutional layer. The
number in parentheses for each RCL denotes the number of unfolding
time steps T . All CLs and RCLs used ReLU while all MLP layers
used sigmoid function as activation function. Besides the models
described in Table 1, a 4-layer MLP was also tested with 2048 units
in every layer.

4.1.3. Results

The results of these models are listed in Table 2. Considering the
same 3-layer MLP among the models, the first model in the table can
be called MLP, the second and the third can be called CNN, and the
models with RCL can be called RCNN. From MLP, CNN to RCNN, a
progressive decrease in PER was observed. The comparison between
the 1-layer and 2-layer CNNs (the second and the third models in
Table 2) confirmed the fact that for small-scale corpus, stacking more
convolutional layers may be harmful and convinced us to use a single
RCL layer in the RCNN models. We found that unfolding more time
steps may yield lower PER (compare the fourth and fifth models
in Table 2) but there was a limit. To achieve an appropriate size of

2The tuple (Nf , Nt) corresponds to the frequency- and time- axis, and so
is the stride size.

dev set3 core test set

4-layer MLP 19.9% 22.0%
CL+pooling+3-layer MLP 18.4% 20.0%
CL1+CL2+pooling+3-layer MLP 19.2% 20.5%
RCL(1)+pooling+3-layer MLP 18.3% 20.3%
RCL(2)+pooling+3-layer MLP 17.3% 19.2%
RCL(3)+pooling+3-layer MLP 17.5% 19.3%
RCL(2)+CL+3-layer MLP 17.0% 18.0%
DBN [20] - 20.7%
CNN (limited weight sharing) [1] - 20.5%
bottleneck CNN [27] 16.1% 18.6%
3-layer LSTM + HMM [30]4 17.7% 18.8%
3-layer LSTM + pre-trained transducers [10] - 17.7%
Attention model [6] 15.8% 17.6%
time- and frequency- domain convolution [28] 14.2% 17.6%
time- and frequency- domain convolution
(with dropout) [28] 13.9% 16.7%

Table 2. Results of different models on TIMIT phoneme recognition.

train decode

RCNN 2012 samples per second 1.721 utterances per second
LSTM 275 samples per second 0.944 utterances per second

Table 3. Comparison of speed between RCNN and LSTM

input for posterior MLP, a pooling layer of stride 15 was used in
most models, which may render a loss of temporal information. By
replacing the pooling layer with a CL, PER decreased to 18.0%.

We compared the results with existing models in the literature
(see the lower part of Table 2). Our best model outperformed most
of the ANN-HMM hybrid models. The exception was a network-in-
network configuration [28], which was trained in two steps. Com-
pared with the recently developed RNN-based end-to-end models,
such as the RNN transducer [10] and attention model [6], our model
was also competitive. However, our model converged faster and did
not use pre-training. The best model in [10], which achieved 17.7%
PER, was based on a pre-trained transducer and was trained for 144
epochs. For RCNN, however, the model was trained within 20 ∼ 30
epochs from scratch.

To compare the speed of RCL module with LSTM module, we
trained a 3-layer LSTM with 1024 cells per layer using CNTK on our
GPU server. The structure was borrowed from [30] (the non-highway
version). An HMM, instead of a pretrained transducer, was used on
top of the LSTM. The mini-batch size was set to 200, the same as
for RCNN. Results showed that RCNN was faster both in training
and decoding phases (Table 3). We attribute the difference to heavily
optimized convolution operation in CNTK.

4.2. Emotion recognition

4.2.1. Dataset

The IEMOCAP dataset [5], short for The Interactive Emotional
Dyadic Motion Capture, consists of approximately 12 hours of audio-
visual data and was annotated by multiple annotators. Since different

3The selection for the development set may vary with different authors.
4The original paper works on another dataset. We use the structure here

only to compare the speed between RCNN and LSTM so the performance
may not be tuned perfectly. See in 4.1 for further discussion.



annotators may give different judgments, labels with the majority of
annotators were used in order to avoid ambiguity. We only considered
utterances with labels from the following five emotions: excitement,
frustration, happiness, neutral and surprise. Among the 5300 ut-
terances left after the filtering process, a proportion of 80% was
randomly selected for training and the remaining were used for test.

4.2.2. Experimental setup

The input to the models consisted of 25-frame segments and the corre-
sponding labels. Three models were constructed. The first model was
an MLP with 3 hidden layers. The second was a CNN consisting of a
CL with a 2-hidden-layer MLP. The third was an RCNN consisting
of an RCL with a 2-hidden-layer MLP. Each fully connected hidden
layer had 256 units with the ReLU activation function. For RCL, the
feed-forward kernel size (Nf , Nt) was (9, 9) and the recurrent kernel
size (Nf , Nt) was (7, 5), and the number of unfolding time steps was
2, such that the RCL unit could see the whole input. The number of
channels was 64 for both feed-forward and recurrent part. For com-
parison, the CL had 128 convolutional kernel with (Nf , Nt) = (9, 9)
along with a max pooling layer of size (2, 2) and stride (2, 2) such
that the number of learnable weights were comparable. Nonlinearity
was realized by ReLU and local response normalization (LRN) [15]
with hyper-parameters α = 10−3, β = 0.75, k = 1, n = 9.

After segment-level optimization, the segment-level features were
extracted and merged into an utterance-level feature for utterance-
level classification according to a previous study [12]. Let f (l)s =

[f
(l)
s (1), · · · , f (l)

s (D)] denote the D-dimensional feature extracted
from the l-th layer for the s-th segment. For an utterance with segment
S = {1, · · · , S}, the utterance-level feature f (l) is defined as
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The first three vectors of feature can be viewed as a pooling in the
manner of maximizing, minimizing, and averaging along all segments
of a single utterance. The last vector is the percentage of segments
whose activation on each neuron in the feature map is above a certain
threshold.

After the fixed-length utterance-level features were obtained, an
SVM classifier was trained to predict the utterance-level labels. Since
the utterances were not evenly distributed among emotion categories,
both weighed and unweighed accuracy were calculated for evaluation,
as in [12]. The weighed accuracy is the accuracy on the whole test
set, with every utterance’s contribution being the same, while the
unweighed accuracy is the averaged accuracy over each emotion
class, which better reflects overall accuracy in the presence of an
imbalanced class.

Weighed Accuracy =
# of correct utterances

# of utterances

Unweighed Accuracy =
1

5

5∑
i=1

# of correct utterances for emotion i
# of utterances for emotion i

4.2.3. Results

We compared the classification accuracy using segment-level features
from different layers and found that those from the last hidden layer

performed best. All results reported in Table 4 are based on those
features. Besides weighted accuracy and unweighted accuracy, Table
4 also shows the frame-wise test accuracy during segment-level train-
ing. Among the three models, RCNN performed the best in terms of
both weighed and unweighed accuracy. Compared with models in
the literature, RCNN has achieved competitive results. Note that it is
claimed in [12] that using spectral features rendered unsatisfactory
performance and, as a result, MFCC plus pitch-based features were
used in [12]. Our results indicate that using RCNN, the spectral
features, the relatively lower level features, can also achieve good
results.

frame-wise weighed unweighed
accuracy accuracy accuracy

3-layer MLP 41.4% 48.5% 39.9%
CL+2-layer MLP 43.1% 53.4% 41.6%

RCL+2-layer MLP 43.5% 53.6% 42.8%
(MFCC + pitch) MLP+SVM [12] - ∼ 50% ∼45%5

Log Spec + CNN [31] - - 35.98%
Log Spec + PCA whiten

+ CNN [31] - - 40.02%

Table 4. Speech emotion recognition results on IEMOCAP

5. CONCLUSIONS AND FUTURE WORK

Recently, a deep learning model called recurrent convolutional neural
network (RCNN) was proposed for performing computer vision tasks.
In this work, we proposed to use this model for speech processing.
Experimental results on two benchmark datasets showed that it was
competitive with existing models. We conclude that this structure
can be used for processing both image and speech information effi-
ciently, which may inspire more generic and efficient cross-modal
deep learning models in the future.
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