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Abstract

This report describes the approach behind our solution
to the 2023 Epic-Kitchens Action Recognition and Multi-
Instance Retrieval Challenge. Our approach builds upon
our recent work, Language-augmented Video-Language
Pre-training (LaViLa). We propose several improvements
such that we can successfully pre-train and fine-tune a
medium- to large-sized video-text dual encoder model with
8 consumer grade GPUs. Our final submission consists of
an ensemble of models varying backbone sizes. On the Ac-
tion Recognition Challenge, our approach achieved 54.3%
Action-level Top-1 accuracy on the test set, 1.5% higher
than last year’s winning entry while using a significantly
smaller number of ensemble models and pre-training data.
On the Multi-Instance Retrieval Challenge, our approach
achieved 70.8% average nDCG on the test set, 9.3% higher
than last year’s winning entry.

1. Introduction

Following the success of CLIP [12] in the the field of im-
age understanding, video-language pre-training has proven
an effective approach for video understanding. However, it
requires a significantly increasing pre-training cost. Particu-
larly, training a CLIP-style video-language model typically
requires as many as 32 to 64 GPUs or TPUs [10,11] to con-
struct a batch of ∼ 1K video clips.

In this submission we propose a solution of pre-training
a state-of-the-art video-language model on a single ma-
chine with 8 consumer grade GPUs by optimizing the train-
ing pipeline from three aspects: model, video loading, and
video pre-processing. The pre-trained model can seam-
lessly adapt to down-stream tasks through end-to-end fine-
tuning and achieve excellent performance on the chosen Ac-
tion Recognition and Multi-Instance Retrieval Challenge.

2. Method
2.1. Optimizing Pre-training Pipeline

We follow the pre-training pipeline LaViLa [17] and in-
troduce a series of techniques to optimize the GPU memo-
ries, CPU utilization, and IO bottleneck respectively.
A memory-efficient video ViT. We choose a plain video
ViT [1, 6] architecture rather than a TimeSformer [2] since
ViT is more memory and computationally efficient if opti-
mized properly.

We observe that the attention operator accounts for over
60% of the overall memory consumption in a plain video
ViT architecture. We remove this memory footprint using
FlashAttention [5]. We can further trade computation for
memory efficiency through gradient checkpointing [3].
Increasing CPU Utilization in Pre-processing. A typical
video training pipeline consists of both video decoding and
cropping, both of which are CPU intensive. With a larger
batch size, CPU-intensive video pre-processing becomes a
bottleneck. To address this, we propose to merge Ran-
domResizedCrop, which is a standard cropping operation
in contrastive visual-language pre-training, into the video
decoding stage as a cropping filter.
Eliminating IO bottleneck. Both Ego4D and Epic-
Kitchens videos are long-term videos with an average
length of ∼ 20 minutes. An increased throughput will pose
challenges to the disk IO because of video loading. One so-
lution is to split each input video into multiple fixed-length
chunks [10, 17]. While the length of these chunks is often
chosen heuristically, we propose a way to compute the op-
timal chunk length in the following.

Let B denote the batch size, ρ denote the average bitrate
of a video, Sr denote the maximum read speed, and ∆ de-
note the elapsed time of one training iteration. To hide the
IO bottleneck from the training, we require the video model
to consumer fewer bits B× ρ×T than the disk can provide
Sr ×∆:

B × ρ× T ≤ Sr ×∆. (1)

Note that we only control the length T of each chunk while
the rest of the variables are determined by the hardware en-



Method Hardware Batch Mem. GPU·hour 0-shot
size (GB) Avg. mAP

(ORIGINAL NARRATIONS)
EgoVLP 32× A100 16 22 1,536 22.1

Ours 8× A5000 256 19 170(-89%) 27.4(+5.3)

(LLM-AUGMENTED)
LaViLa 32× V100 32 25 1,824 29.5

Ours 8× A5000 256 19 408(-78%) 31.7(+2.2)

Table 1. Comparison of Training cost.

vironment. In our experimental setup, typical values for a
ViT-base model are N = 1024, ρ = 1 Mb/sec, ∆ = 4 sec
and Sr = 500 MB/sec, which leads to T ≤ 16 sec. There-
fore, we use 15-second chunks in practice for both Ego4D
and Epic-Kitchens videos.

2.2. Fine-tuning on the Down-stream Tasks

Fine-tuning Action Recognition Models. When fine-
tuning on the action recognition task, we take the video en-
coder of the pre-trained dual-encoder model, drop the last
projection layer, and attach a classification head. We then
end-to-end train the model on the training split and evalu-
ate it on the validation/test split. Note that due to resource
limit, we did not train another model on the joint train+val
split when submitting the testing result to the leader-board.
Fine-tuning Multi-Instance Retrieval Models. When
fine-tuning on the multi-instance retrieval task, we take the
dual-encoder model as is, and fine-tune it with the multi-
instance max-margin loss [13], which proves more effective
for this task than the InfoNCE loss.

3. Experiments

3.1. Video-Language Pre-training on Ego4D

Experimental Setup. The video-language model follows
CLIP [12]. The vision encoder is a Vision Transformer Base
(ViT-B) model [6], whose weights are initialized from CLIP
except that we randomly initialize the temporal position em-
bedding PEt and then add it to the original patch-wise (spa-
tial) position embedding. We represent each video clip by
T = 4 frames when pre-training on Ego4D.
Pre-training efficiency. In Table 1, we showcase the pre-
training efficiency after optimization with the ViT-B back-
bone. With the original 4M ground-truth narrations, our
model can be trained in 5 full epochs using 8× RTX A5000
GPUs in 21 hours, accounting for only 1

9 of the GPU·hours
required by EgoVLP [10]. Our model also benefits from
larger-scale pseudo-narrated video-text pairs generated by
LaViLa [17].
Scaling effect. We study the effect of data scaling in Ta-

Backbone Split Ver. LM- Corpus size 0-shot
aug. Avg. mAP

ViT-B
train v1 4.0M 27.3
train v2 5.5M 28.4

ViT-B
train v1 ✓ 35M 31.7
train v2 ✓ 36.5M 32.6

ViT-L
train v1 4.0M 31.9
train v2 5.5M 35.0

train+val v2 6.6M 36.8

Table 2. Scaling effect of video-language pre-training.
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Figure 1. Effect of pre-training batch size. The numbers are
measured using T = 4 frames as input. Large-batch training,
which was not possible without multi-node training, benefits the
video-language contrastive models consistently especially in the
presence of larger scale narrations.

ble 2. After a recent update1, Ego4D v2 narrations in-
crease by 30%. Besides, we include videos from the val-
idation and testing splits of the Ego4D challenge bench-
marks, resulting in 20% more video-narration pairs (de-
noted as “train+val”). We find that the zero-shot perfor-
mance consistently increases with respect to the increased
corpus size. We also observe an similar trend of improve-
ment using LaViLa (denoted as “LM-aug.”) with ViT-B.
This indicates the importance of increasing data scale for
video-language pre-training. We leave evaluating LaViLa
w/. ViT-L for future work due to time limit.

3.2. Fine-tuning EK100 Action Recognition

Experimental Setup. The fine-tuning protocol mostly fol-
lows LaViLa [17]. When fine-tuning on EK-100 CLS, we
increase input frame number T from 4 to 16 and linearly
interpolate PEt along the temporal dimension. Unlike pre-

1https://discuss.ego4d-data.org/t/ego4d-v2-0-
release-updates/197

https://discuss.ego4d-data.org/t/ego4d-v2-0-release-updates/197
https://discuss.ego4d-data.org/t/ego4d-v2-0-release-updates/197


Method Backbone Pre-train
Top-1 Accuracy

Verb Noun Action
(VALIDATION SPLIT)
MoViNet [9] MoViNet N/A 72.2 57.3 47.7
MTCN [8] MFormer-HR IN-21k+K400 +VGG-Sound 70.7 62.1 49.6
Omnivore [7] Swin-B IN-21k+IN-1k+K400+SUN 69.5 61.7 49.9
MeMViT [14] MViT K600 71.4 60.3 48.4
MTV [16] MTV WTS-60M 69.9 63.9 50.5
M&M-B [15] MTV WTS-60M 72.0 66.3 53.6
LaViLa [17] TSF-L WIT+Ego4D 72.0 62.9 51.0

Ours
ViT-B

WIT+Ego4D+

69.1 60.6 49.1
ViT-L 72.6 65.4 54.4

ViT-L@336px 73.4 66.7 55.4
(TEST SPLIT)
M&M-B [15] MTV WTS-60M 68.0 63.7 49.6
Ours ViT-L WIT+Ego4D 70.7 64.3 52.2

Ours
Ensemble

WIT+Ego4D+ 71.7 65.8 54.3
(B+L+Audio)

Table 3. Comparison to the state-of-the-art on EK-100 CLS.
Ego4D+ denotes the v2 annotations under train+val splits.

vious works [15, 16], we only apply RandomResizedCrop
for data augmentation since we observe slower convergence
when using RandomAugmentation. We use a mixup of 0.8,
label smoothing of 0.1, a stochastic depth ratio of 0.1, and a
dropout layer before the classification head with probability
of 0.5. We train a single action-level classification head and
compute the verb- and noun-level scores at test time only
through marginalization.
Comparison to the State-of-the-art. Table 3 compares
our fine-tuned recognition models to the previous state-of-
the-art as well as last year’s winning entry of the challenge
(M&M-B). We can see that our single model with ViT-L
backbone outperforms previous works on Top-1 action- and
verb-level accuracies. When the input resolution increases
from the default 224 to 336, the performance can further
improves. Also note that compared to M&M-B, our model
relies on a smaller resolution (336 vs. 432), fewer input
frames (16 vs. 64 frames), and publicly available pre-trained
models and a smaller pre-training dataset.

It is also noteworthy that the val-test gap between ours
is remarkably (54.4 − 52.2 = 2.2) smaller than M&M-B
(53.6 − 49.6 = 4). This indicates that our model is less
overfitted probably because Ego4D videos for pre-training
are visually more similar to Epic-Kitchens videos compared
to YouTube videos from WTS-60M.
Model Ensemble. In Table 4 we enumerate the models
used in the ensemble: (1) two ViT-L models trained on
Ego4D v2 training videos with the only difference that we
train one using random erasing with probability of 0.8 (Row
2) while the other not (Row 1); (2) one ViT-L model trained
on Ego4D v2 training+validation videos; and (3) two ViT-

Backbone Resolution Pre-train
Top-1 Accuracy

Verb Noun Action
ViT-L 224 v2 train 73.3 65.0 54.0
ViT-L 224 v2 train 72.4 64.8 53.5
ViT-L 224 v2 train+val 72.6 65.4 54.4
ViT-L 336 v2 train 73.2 66.2 54.7
ViT-L 336 v2 train+val 73.4 66.7 55.4

ViT-B (Audio) 224 v1 train 50.4 25.4 20.6

Table 4. Model variants used in the final ensemble.

L models that take higher-resolution (336 pixels) videos as
input. We additionally train a ViT-B model using audio as
input following the pre-processing pipline in [15]. We ob-
serve that it always improves the ensemble performance by
0.2 ∼ 0.3% on the validation split through late fusion.

3.3. Fine-tuning EK100 Multi-Instance Retrieval

Experimental Setup. When fine-tuning on EK-100 MIR,
we also increase input frame number T from 4 to 16 and
linearly interpolate PEt. We use the multi-instance max-
margin loss [13] with a margin value of 0.2.

Comparison to the State-of-the-art. Table 5 compares
our fine-tuned retrieval models to the previous state-of-the-
art as well as last year’s winning entry of the challenge
(EgoVLP++). We can see that our model with a ViT-Base
backbone can achieve a higher average mAP and same
nDCG compared to the previous state-of-the-art (LaViLa)
with a larger backbone (TimeSformer-Large). This is prob-
ably ascribed to the enlarged batch size during fine-tuning.
When we switch to a larger backbone (ViT-L), the perfor-
mance further increases.

Following EgoVLP [10], we also observe that apply-
ing dual-softmax [4] on the dot-product between the un-
normalized video and textual embedding is consistently bet-
ter than using the cosine similarity matrix between the nor-
malized video and textual embedding. We did not run the
adaptive margin loss due to time and computation limit.

Model Ensemble. Finally, we find that model ensembling
benefits retrieval performance as well. The intuition is that
each row after the second softmax operation in [4] can be
interpreted as a probability distribution. Formally, given the
video-to-text similarity matrix of the i-th model is Si, we
compute their weighted average, namely

Sensemble =

∑
i αiSi∑
i αi

. (2)

We take two models, namely ViT-B and ViT-L, and empiri-
cally find that α1 = α2 = 1 works the best.



Method Backbone
+DS mAP nDCG
[4] V→T T→V Avg. V→T T→V Avg.

EgoVLP [10] TSF-B 49.9 40.5 45.0 60.9 57.9 59.4
EgoVLP++ [10] TSF-B ✓ 53.8 41.0 47.4 63.3 59.6 61.4
LaViLa [17] TSF-L 54.7 47.1 50.9 68.1 64.9 66.5

Ours

ViT-B 56.8 47.4 52.1 68.3 64.7 66.5
ViT-B ✓ 58.2 48.3 53.3 68.8 65.5 67.2
ViT-L 59.0 49.9 54.4 70.1 67.0 68.5
ViT-L ✓ 61.9 51.8 56.9 71.2 68.2 69.7

Ours
Ensemble

✓ 63.1 53.7 58.4 72.2 69.2 70.7
(B+L)

Table 5. Comparison to the state-of-the-art on EK-100 MIR.
EgoVLP++ denotes an improved model which uses adaptive mar-
gin in the max-margin loss and dual-softmax (+DS) [4]. It is also
the winning entry of the 2022 challenge.

4. Conclusions
In this report, we present the approach behind our sub-

mission to the 2023 Epic-Kitchens Action Recognition and
Multi-Instance Retrieval Challenge. With the proposed
techniques, we are able to efficiently pre-train and fine-tune
all our models on eight consumer grade GPUs and also set
a new record on the Epic-Kitchens Action Recognition and
Multi-Instance Retrieval benchmarks. We believe that our
techniques are generic and can be beneficial to scaling video
models if more resources are available.
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